<table>
<thead>
<tr>
<th>Title</th>
<th>Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki</td>
</tr>
<tr>
<td>Citation</td>
<td>Review of Scientific Instruments. 83(12), p. 123105</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-12-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10297/7054</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2012 American Institute of Physics</td>
</tr>
</tbody>
</table>
Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source
Akira Kuwahara, Makoto Matsui, and Yoshiki Yamagiwa

Citation: Rev. Sci. Instrum. 83, 123105 (2012); doi: 10.1063/1.4770118
View online: http://dx.doi.org/10.1063/1.4770118
View Table of Contents: http://rsi.aip.org/resource/1/RSINAK/v83/i12
Published by the American Institute of Physics.

Related Articles
Spectroscopic refractometer for transparent and absorbing liquids by reflection of white light near the critical angle
Non-degenerated photoluminescence excitation correlation spectroscopy using an optical sampling technique
A high resolution ultraviolet Brillouin scattering set-up
Note: A 4 ns hardware photon correlator based on a general-purpose field-programmable gate array development board implemented in a compact setup for fluorescence correlation spectroscopy
Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna

Additional information on Rev. Sci. Instrum.
Journal Homepage: http://rsi.aip.org
Journal Information: http://rsi.aip.org/about/about_the_journal
Top downloads: http://rsi.aip.org/features/most_downloaded
Information for Authors: http://rsi.aip.org/authors
Development of vacuum ultraviolet absorption spectroscopy system for a wide measurement range of number density using a dual-tube inductively coupled plasma light source

Akira Kuwahara, Makoto Matsui, and Yoshiki Yamagiwa
Department of Mechanical Engineering, Shizuoka University, 3-5-4 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka, Japan

(Received 5 September 2012; accepted 19 November 2012; published online 12 December 2012)

A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770118]

I. INTRODUCTION

Atomic species in plasma are important in several fields such as the oxidation of materials, chamber cleaning, organic polymer etching, space propulsion, and thermal protection systems for entry vehicles. In these varied fields, however, no established method is yet available to measure these number densities. Intrusive methods such as mass spectroscopy, titration, and the use of a quartz crystal microbalance (QCM) are difficult to apply to reactive plasma diagnostics because of the disturbance they introduce, as well as their limited thermal tolerance and bad spatial resolution. Non-intrusive forms of spectroscopy have also been used for such plasma diagnostics. Since the resonance lines of many atomic ground states belong to the vacuum ultraviolet region, two-photon absorption laser-induced fluorescence spectroscopy (TALIF) is a unique method for accessing a ground state directly, with enough wavelength resolution to obtain the line profiles. However, a theoretical two-photon absorption cross section is so complex and unreliable that it creates inaccuracy as to the absolute number density measurement.

Recently, vacuum ultraviolet absorption spectroscopy (VUVAS) that uses a plasma light source has been developed as an approach for direct number density measurement to the ground state. Absorption spectroscopy gives an absolute number density from the fractional absorption without any calibration, and it is theoretically applicable to any number density target. However, the measurement error increases drastically for fractional absorption that is smaller than 1%. In addition, the practical measurement number density range is usually limited to around two orders of magnitude.

Since fractional absorption depends not only on the number density and absorption length, but also on the relationship between the probe beam and the target absorption profiles, we developed a variable beam profile light source that can be used for in the measurement of a wide number density range.

This system, useful for VUVAS, was validated and evaluated using cold xenon gas.

II. VACUUM ULTRAVIOLET ABSORPTION SPECTROSCOPY

A. Number density measurement

Since the wavelength resolution of a commercial VUV spectrometer is much larger than the absorption line width, the measured fractional transmitted beam intensity \(\frac{I_t}{I_0} \) is given as a frequency integrated value as

\[
\frac{I_t}{I_0} = \frac{\int f_{\text{probe}}(\nu) \exp[-Kf_{\text{target}}(\nu)]d\nu}{\int f_{\text{probe}}(\nu) d\nu},
\]

where \(I_t, I_0, f_{\text{probe}}(\nu), f_{\text{target}}(\nu), K, \) and \(I \) are the incident beam intensity, transmitted beam intensity, normalized probe beam and absorption profiles, integrated absorption coefficient, and absorption length, respectively. \(K \) is related to the number density of the absorption state, \(n_i \) as

\[
n_i = \frac{8\pi}{\lambda^2 A_{ji}} \frac{g_i}{g_j} K,
\]

where \(A, i, \) and \(j \) are the Einstein coefficient, absorption state, and excited state, respectively. Since the proportional constant in Eq. (2) depends on the absorption line, in this paper, the discussion is focused not on \(n_i \) but on \(KL \).

Under low-pressure conditions, the beam and absorption profiles are Gaussian, with a Doppler width of \(\Delta \nu_D \). These profiles are then expressed as

\[
f(\nu) = \frac{1}{\sqrt{\pi} \Delta \nu_D} \exp \left[-\frac{(\nu - \nu_0)^2}{\Delta \nu_D^2} \right],
\]

\[
\Delta \nu_D = \frac{\nu_0}{c} \sqrt{\frac{2k_B T}{M_A}},
\]

where \(\nu_0, M_A, k_B, \) and \(T \) are the center frequency, atomic weight, Boltzmann constant and translational temperature,
B. Measurement error and measurable range

As shown in Eq. (1), any K_l gives I/I_0 in the range of 0 to 1, where an infinite K_l and K_l equal to 0 correspond to I/I_0 of 0 and 1, respectively. Theoretically then, there is no measurement limit for K_l. In practice, however, there is measurement error $\Delta(I/I_0)$. Figure 1 shows K_l and the K_l error as functions of I/I_0 for several $\Delta(I/I_0)$. Here, T_{probe} and T_{target} are set to be 800 K and 300 K, respectively. As can be seen in the figure, $\Delta(I/I_0)$ causes a drastically large K_l error as I/I_0 approaches 0 and 1. The, reliable measurement region of K_l is then limited to about two orders of magnitude, from 10^9 to 10^{11} for I/I_0 from 1% to 99%.

One approach to extending the measurement region of K_l is to vary the inductively coupled plasma (ICP) temperature T_{probe} in Eq. (1). However, it is difficult to control T_{probe} more than one order of magnitude. Therefore, in this study, the probe beam profile is varied by controlling the absorption in an ICP light source.

C. Effect of absorption in ICP light source

Considering the absorption between plasma and an incident window in an ICP tube, the effective incident beam intensity I_0' is a value that is absorbed value to a certain degree. Equation (1) is then rewritten as the effective fractional transmitted beam intensity I/I_0', which is expressed as

$$
\frac{I'}{I_0'} = \frac{\int f_{\text{probe}}(v) \exp(-K_{\text{tube}}l_{\text{tube}} f_{\text{tube}}(v) - K_l f_{\text{target}}(v)) dv}{\int f_{\text{probe}}(v) \exp(-K_{\text{tube}}l_{\text{tube}} f_{\text{tube}}(v)) dv},
$$

where $I', f_{\text{tube}}(v), K_{\text{tube}},$ and l_{tube} are the effective transmitted beam intensity, absorption profile, integrated absorption coefficient, and absorption length between the plasma and the incident window, respectively. Figure 2 shows I'/I_0' as a function $K_{\text{tube}}l_{\text{tube}}$ for several K_l. Here, the temperature T_{tube} is set to be the same as the supplied gas temperature of 300 K. As can be seen in the figure, I'/I_0' increases with the increase in $K_{\text{tube}}l_{\text{tube}}$. Thus, even for a large target K_l, I'/I_0' becomes detectable by increasing $K_{\text{tube}}l_{\text{tube}}$. In this study, $K_{\text{tube}}l_{\text{tube}}$ is varied by changing the mass flow rate ratio of a dual-tube ICP source.

III. EXPERIMENTAL EQUIPMENT

A schematic of the VUVAS system is shown in Fig. 3. This system employs a dual-tube ICP source for XeI 146.9 nm beam generation. The diameters of the outer and inner tubes are 50 mm and 22 mm, respectively. The xenon gas is supplied from the outer tube by swirl injection in order to stabilize the ICP. For the inner tube, argon is supplied in order to control the partial pressure of the xenon between the plasma and the window, which makes it possible for there to be variable $K_{\text{tube}}l_{\text{tube}}$. The ICP is operated by a 13.56 MHz rf power source (OWM-12, ENI Inc.) with a five-turn copper coil. The net input power is 60 W and the operation pressure ranges from 10^{-1} to 10^{3} Pa. Magnesium fluoride (MgF$_2$) is used as a window material that can transmit the VUV beam. The ICP temperature T_{probe} is measured by a conventional laser absorption spectroscopy (LAS) using a XeI 823.1 nm line. The details of the LAS measurement system are given in Refs. 14 and 15. The transition data of the xenon lines are tabulated in Table I.16

The VUV beam is led to the VUV spectrometer through a test chamber, which is separated from both the ICP source and the spectrometer by two MgF$_2$ windows. The distance

<table>
<thead>
<tr>
<th>Xe line</th>
<th>E_i (eV)</th>
<th>E_f (eV)</th>
<th>g_i</th>
<th>g_j</th>
<th>A_X (10^7 s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VUVAS</td>
<td>146.9 nm</td>
<td>0</td>
<td>8.44</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>LAS</td>
<td>823.1 nm</td>
<td>8.32</td>
<td>9.82</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
between the two MgF₂ windows is 160 mm, which corresponds to the absorption length. The chamber pressure is measured by three kinds of vacuum gauges: a Pirani gauge (WP-01, ULVAC Inc.), Penning gauge (WI-PA, ULVAC Inc.), and ionization gauge (WIT-G1, ULVAC Inc.). The transmitted beam intensity is measured by a corrected holographic type VUV spectrometer (234/302, McPherson Inc.) with a photo multiplier tube (R8486, Hamamatsu Photonics K.K.). The wavelength resolution is 0.1 nm. The ICP, test chamber, and VUV spectrometer are independently evacuated using a mechanic booster pump (YM-300, ULVAC Inc.), diffusion pump (ESV-4C, Shibaura Eletec Corp.), and turbo molecular pump (PT-300, Shimadzu Corp.), respectively.

IV. RESULTS AND DISCUSSION

The xenon pressure of the test chamber was varied from 10^{-3} Pa to 10 Pa by changing the mass flow rate and pumping speed. The operation conditions of the ICP are listed in Table II. Three conditions were tested. Case 1 was a pure xenon operation, and corresponds to a conventional single-tube ICP light source. In cases 2 and 3, argon was supplied from the inner tube in order to reduce the xenon partial pressure between the ICP and the incident window.

Figure 4 shows the measured I'_t/I'_0 and the fitted curves of Eq. (5). Here, the horizontal axis K_l was estimated from the chamber pressure using an equation of state, assuming a temperature of 300 K. The measured T_{probe} by LAS was 830 K and $K_{tube/lube}$ was set as a fitting parameter. As can be seen in the figure, the measured and fitted curves show good agreement in every case. The measurable region is found to shift to a higher K_l region with a decrease in the argon mass flow rate. The reason for this is that $K_{tube/lube}$ increases with the decrease in non-absorbent argon. As a result, the measurable number density range can be extended from the conventional two orders to five orders of magnitude. With this method, a higher $K_{tube/lube}$ permits a higher K_l measurement. However, for the lower region of K_l of less than 10^8, modulation or cavity techniques are useful.

ACKNOWLEDGMENTS

This research was partially supported by the Ministry of Education, Science, Sports, and Culture, via a Grant-in-Aid for Young Scientists (A), (Grant No. 22686079) in 2010.

TABLE II. Operating conditions.

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Inner : Ar (sccm)</th>
<th>Outer: Xe (sccm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>0.05</td>
</tr>
</tbody>
</table>