Title
Isolation and Structural Determination of Makinolide B from Streptomyces sp. MK-19

Author(s)
Hidaki, Michitaka; Yoshida, Mitsuru; Ogawa, Naoto; Kodani, Shinya

Citation
Bioscience, Biotechnology and Biochemistry. 77(9), p. 1964-1966

Issue Date
2013-09-07

URL
http://hdl.handle.net/10297/7909

Version
publisher

Rights
Note

Isolation and Structural Determination of Makinolide B from Streptomyces sp. MK-19

Michitaka Hidaki,1 Mitsuru Yoshida,2,* Naoto Ogawa,1 and Shinya Kodani1,3

1Graduate School of Agriculture, Shizuoka University, 836 Ohy, Suruga-ku, Shizuoka 422-8529, Japan
2National Food Research Institute, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
3Graduate School of Science and Technology, Shizuoka University, 836 Ohy, Suruga-ku, Shizuoka 422-8529, Japan

Received March 11, 2013; Accepted June 2, 2013; Online Publication, September 7, 2013
[doi:10.1271/bbb.130204]

A new 16-membered macrolide named makinolide B (1) was isolated from Streptomyces sp. MK-19. The structure of makinolide B (1) was determined on the basis of 2D NMR experiments involving DQF-COSY, TOCSY, HSQC, and HMBC methods. Application of the paper disk diffusion method to makinolide B (1) showed weak antibacterial activity against Staphylococcus aureus at the dose of 100 μg/disk.

Key words: Streptomyces; macrolide; bafilomycin analogue; NMR spectrum

Macrolides are structurally diverse antibiotics like erythromycin1,2 and are produced by such a microorganism as the soil-dwelling bacterium Streptomyces via polyketide biosynthesis.3 They exhibit various biological activities, including antitumor, antifungal, antiparasitic, and immunosuppressant effects. Among the macrolides, bafilomycins4,5 and setamycin6,7 are 16-membered macrolides that have been reported to exhibit specific membrane ATPase inhibitory activity.8 We have recently isolated a bafilomycin analogue named makinolide A (2),9 together with JBIR-10010 as an antifungal compound from Streptomyces sp. MK-30. In the course of a further chemical investigation of the related strains, we isolated the new bafilomycin analogue, makinolide B, from Streptomyces sp. MK-19. We describe here the isolation and structural determination of makinolide B (1).

The new MK-19 bacterial strain was isolated from soil in a tea field (Makinohara, Shizuoka, Japan) as described in a previous paper.9 A sequencing analysis was performed on the 16S rRNA coding gene to identify the genetic position of the MK-19 strain. The PCR method was used with universal primers for the bacterial 16S rRNA gene to amplify the nearly complete length of this gene. A sequence analysis was conducted by an automated DNA sequencer with universal primers. A phylogenetic tree was constructed from the obtained sequence by using the ClustalX multiple-alignment program. The genetic position of MK-19 was determined to be located in the Streptomyces genus. Strain MK-19 was closely related to previously isolated Streptomyces sp. MK-30 with close 99% similarity. The 16S rRNA gene sequence of Streptomyces sp. MK-19 has been deposited in the DDBJ database under accession no. AB770481. Although strains MK-30 and MK-19 were thought to be closely related, a comparative HPLC analysis of the MeOH extracts between MK-30 and MK-19 only indicated the presence of the new bafilomycin analogue in the MK-19 extract. We therefore isolated and structurally determined the new bafilomycin analogue named makinolide B from Streptomyces sp. MK-19.

Strain MK-19 was cultivated on 1 L of an ISP2 agar medium. The culture medium and mycelia were extracted with an equal volume of acetone after 7 d of cultivation. The acetone extract was concentrated and then subjected to open column chromatography, using the CHP-20P synthetic hydrophobic resin and eluting with 20% MeOH, 60% MeOH, and then MeOH. The MeOH fraction was repeatedly subjected to preparatory HPLC to yield the new macrolide, makinolide B (1 in Fig. 1a).

Compound 1 was isolated as a white amorphous powder. A high-resolution electrospray ionization-mass spectrometry (HR-ESI-MS) analysis of 1 gave an [M + Na]+ ion at m/z 611.3960, consistent with the molecular formula C33H58O7Na (calculated [M + Na]+ ion at m/z 611.3923). To obtain further information on the chemical structure, NMR experiments involving 1H, 13C, DEPT-135, DQF-COSY, TOCSY, HSQC, and HMBC were performed on 1 in acetone-d6 (Table 1). The direct bonds between each proton and carbon were established in the HSQC spectrum. As shown by the bold line in Fig. 1b, an analysis of the DQF-COSY and TOCSY spectra revealed proton–proton spin connections in three partial structures: carbon skeletons connecting C5 to C9, C11 to C18, and C20 to C26. The HMBC correlations (2-Me/C1, 2-Me/C2, 2-Me/C3, 4-Me/C3, 4-Me/C4, 4-Me/C5, shown by opened arrows in Fig. 1b) indicated a 2, 4-dimethyl dienone structure. The HMBC correlations, 10-Me/C9, 10-Me/C10, 10-Me/C11, indicated a connection between the C5 to C9 and C11 to C18 partial structures. The lactone ring flanked with C1 and C15 indicated the HMBC correlation between H15/C1. The HMBC correlation between the oxymethyl (δ 3.22) and C14...
Makinolide B from *Streptomyces* sp. MK-19

Saccharomycetes cerevisiae, and *Mucor hiemalis*, applying the previously reported procedure\(^9\) at a dose of 100 μg/disk. Compound 1 only showed weak antibacterial activity by the formation of a 9-mm-diameter inhibition zone against *S. aureus*.

Experimental

General methods. Makinolide B (1 mg) was dissolved in acetone-\(d_6\) (0.5 mL), and spectral measurements of \(^{1}H\)-NMR at 800.13 MHz, \(^{13}C\)- and DEPT-135 NMR at 201.22 MHz, \(^{1}H\)-\(^{1}H\) correlation 2D NMR (DOQ-COSY, NOESY, and TOCSY), and \(^{1}H\)-\(^{13}C\) correlation 2D NMR (HSQC and HMBC) were taken at 298 K with an AVANCE 600 spectrometer fitted with a CryoProbe (Bruker Biospin, Karlsruhe, Germany). The resonance of residual acetone at 2H 2.04 and 8C 29.9 were used as respective internal references for the \(^{1}H\)- and \(^{13}C\)-NMR spectra. The ESI-MS data were recorded with a Jeol JMS-T100LP mass spectrometer, and the UV spectrum was recorded with UV-1200 UV/ VIS spectrophotometer (Hitachi, Japan).

Polymerase chain reaction (PCR) amplification, sequencing, and phylogenetic analysis of the 16S rRNA gene. All DNA was extracted from the cells of strain MK-19 according to the literature procedure.\(^{12}\) The 16S rRNA-encoding sequence was amplified from total DNA by the PCR method with the universal primer pairs, 9F (5’-GAGTTTGATCCTGCGTCAAG-3’) and 1510R (5’-GGCTACCTTGTTACGAC-3’). The PCR reaction was performed by using the EmeraldAmp PCR Master mix (Takara Bio, Japan) according to the manufacturer’s instructions. PCR amplification was carried out with a thermal cycler using the following program: initial denaturation for 10 min at 94 °C, and then 34 cycles consisting of denaturation for 40 s at 94 °C, annealing for 60 s at 55 °C, and DNA synthesis for 1 min at 72 °C. A final extension of 5 min at 72 °C was included at the end of the 34 cycles. The PCR product was purified with an AxyPrep DNA gel extraction kit (Axygen Bioscience, USA) according to the manufacturer’s instructions. The reactions for sequencing were performed by using a BigDye Terminator cycle sequencing kit according to the manufacturer’s instructions. The four primers used for the reaction were 339F (5’-CTCTTACGGGAGTAACAC-3’), 536R (5’-GTATACCGGCGCTCGT-3’), 686F (5’-TAGCCGGTGAAATGCGT-3’), and 1099F (5’-GCAAAGCGGCACCCC-3’). Sequencing was performed with an ABI 3130 capillary DNA sequencer (Applied Biosystems, USA).

Isolation of makinolide B. An ISP2 agar\(^{13}\) medium (1 L) was used for culturing *Streptomyces* sp. MK-19. After 7-8 d at 30 °C, an aerial volume of acetone was added to the agar culture medium and mycelia for extraction. The resulting acetone extract was concentrated to an aequous suspension which was subjected to open column chromatography (CHP-20P, 3 x 5 cm; Mitsubishi Chemicals), eluting with 50 mL each of 20% MeOH, 60% MeOH, and MeOH. The MeOH fractions were subjected to preparatory reverse-phase HPLC in an ODS column (Cosmosil C18-MSIL, 4.6 x 250 mm; Nacalai Tesque) with isocratic elution of 85% MeCN containing 0.05% trifluoroacetic acid (TFA) at an absorbance of 220 nm to yield 2.7 mg of makinolide B (1). UV absorption in MeOH at λmax 280 nm (ε 700) and λmax 238 nm (ε 3350); chemical shift values are shown in Table 1.

Antimicrobial assay. The NBRC culture collection (NITE Biological Resource Center, Japan) afforded the testing microorganisms of *Escherichia coli* (NBRC 100203), *Pseudomonas aeruginosa* (NBRC 12689), *Staphylococcus aureus* (NBRC 1009110), *Micrococcus luteus* (NBRC 3333), *Saccharomycetes cerevisiae* (NBRC 2376) and *Mucor hiemalis* (NBRC 9405). All microorganisms were cultivated in an ISP2 agar\(^{13}\) medium with incubation at 30 °C. A paper disk diffusion assay (8 mm i.d., thick type) was performed to determine the antimicrobial activity of 1. Tetracycline (against *E. coli*, *P. aeruginosa*, *S. aureus*, and *M. luteus*) and cycloheximide (against *S. cerevisiae* and *M. hiemalis*) were used as the positive controls. After incubating for 24 h, tetracycline (10 μg/disk) formed inhibition zones with respective diameters of 20 mm, 16 mm, 21 mm, and 25 mm against *E. coli*, *P. aeruginosa*, *S. aureus*, and *M. luteus*, while cycloheximide (10 μg/disk) for *S. cerevisiae* and 50 μg/disk for *M. hiemalis* formed respective inhibition zones with diameters of 30 mm and 10 mm. An MeOH solution was used as a negative control which did not show any inhibition under the same conditions.

Experimental

![Figure 1](image_url)

Fig. 1. a) Chemical Structures of Makinolide B (1), Makinolide A (2), and Micronomonospolide C (3); b) Key NMR Correlations of 1 in Acetone-\(d_6\).
Acknowledgments

This study was supported by research funding from Takeda Science Foundation, Astellas Foundation for Research on Metabolic Disorders, Foundation of Hattori Hokokai, and Kurata Memorial Hitachi Science and Technology Foundation. We thank Ms. Maeda for operating the NMR system and Mr. Nagata for providing the soil samples.

References