<table>
<thead>
<tr>
<th>Title</th>
<th>Novel enzymatic synthesis of spacer-linked Pk trisaccharide targeting for neutralization of Shiga toxin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kato, Tatsuya; Oizumi, Takahiro; Ogata, Makoto; Murakawa, Akiko; Usui, Taichi; Park, Enoch Y.</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal of Biotechnology. 209, p. 50-57</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-06-20</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10297/9723</td>
</tr>
<tr>
<td>Version</td>
<td>author</td>
</tr>
</tbody>
</table>

Copyright © 2015 Elsevier B.V. All rights reserved.
Novel enzymatic synthesis of spacer-linked Pk trisaccharide targeting for neutralization of Shiga toxin

Tatsuya Katoa, Takahiro Oizumi, Makoto Ogatad, Akiko Murakawac, Taichi Usuic, Enoch Y. Parka,b,c*

a Laboratory of Biotechnology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan

b Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan

c Laboratory of Biotechnology, Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan

d Department of Chemistry and Biochemistry, Fukushima National College of Technology, 30 Nagao, Iwaki, Fukushima 970-8034 Japan

* Corresponding author at: Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan. Tel. & Fax: +81 54 238 4887. E-mail address: acypark@ipc.shizuoka.ac.jp (Enoch Y. Park).
ABSTRACT

A novel alkyl spacer-conjugated derivative of Pk trisaccharide (Pk), one of the active receptors of Shiga toxins (Stxs; Stx1 and Stx2) produced by pathogenic Escherichia coli (STEC), was designed and synthesized by a combination of cellulase-mediated condensation from Trichoderma reesei and α1,4-galactosyltransferase (LgtC) from Neisseria gonorrhoeae. The specific activity of N. gonorrhoeae LgtC was 66 U/mg, which was 13-fold higher than that from N. meningitidis expressed in E. coli. 5-Trifluoroacetamidopentyl-β-Pk (TFAP-Pk) was synthesized (yield of 86%, based on the amount of TFAP-lactose added) and its binding to Stx1a-B and Stx2a-B was evaluated. The dissociation constants (KD) of Stx1a-B and Stx2a-B to the spacer-linked Pk, immobilized on a CM5 sensor chip, were 6.8×10^{-6} M ($k_{on} = 4.1 \times 10^4$ M$^{-1}$S$^{-1}$, $k_{off} = 2.8 \times 10^{-4}$ S$^{-1}$) and 2.2×10^{-5} M ($k_{on} = 3.9 \times 10^2$ M$^{-1}$S$^{-1}$, $k_{off} = 8.6 \times 10^{-3}$ S$^{-1}$), respectively. This result suggests that the monovalent Pk-derivative, conjugated to a pentylamino group, represents a promising Stx-neutralizing agent. This cellulase-mediated condensation using cellulase and glycosyltransferase is a valuable tool for the synthesis of spacer-linked oligosaccharide.

Keywords: α1,4-Galactosyltransferase; Shiga toxin; Globotriose; Neisseria gonorrhoeae; Cellulase-mediated condensation
1. Introduction

Cell surface glycans are involved in many physiological phenomena, including cell differentiation, cell development, signal transduction, virus and pathogen infection, and cancer metastasis. Glycan-binding proteins (GBPs) have crucial roles in these phenomena by recognizing and binding specific glycans. This GBP-glycan interaction is comparatively weak, compared to protein-protein interactions, but is never negligible biologically, because glycans are very important molecules together with proteins and nucleic acids (van Kooyk and Rabinovich, 2008). In addition, synthetic glycans and oligosaccharides have been investigated for the detection and prevention of virus infection (Ogata et al., 2007; Schofield et al., 2007).

To analyze the binding properties of GBPs, various glycan arrays have now been developed, in which chemically synthesized glycans containing an amine or other functional group are arrayed on N-hydroxysuccinimide (NHS)- or epoxy-activated glass slides (Blixt et al., 2004). Such a glycan array was previously utilized as a glycan library to investigate various GBP-binding parameters (Song et al., 2008). Several glycans and oligosaccharides have been synthesized by chemical and enzymatic reactions to investigate their characteristic properties and GBP specificity (Hsu et al., 2011; Lepenies et al., 2010). In chemical synthesis of glycan, many tedious steps required to protect and deprotect hydroxyl groups (Pazynina et al., 2002; 2003) can be circumvented by stereo- and region-specific reaction by glycosyltransferases (Palcic, 2011). From a practical point, the use of glycosyltransferases is attractive for glycan synthesis, because it is highly regioselective for specific hydroxyl groups. On the other hand, glycosidases, which normally hydrolyze glycosidic bonds, catalyze two types of
reactions, transglycosylation (Yamamoto, 2013) and condensation (Yasutake et al., 2003), and the condensation reaction has been used in the synthesis of spacer-O-linked glycans.

In the present study, a novel Pk trisaccharide (Pk)-conjugated derivative with an alkyl spacer, a sugar unit monomer in the chemical structure, was designed and synthesized by the combination of cellulase-mediated condensation, by \textit{Trichoderma reesei} glycosidase, and glycan transfer, using the \textit{Neisseria gonorrhoeae} \(\alpha1,4\)-galactosyltransferase (LgtC). This Pk would be expected to bind \textit{E. coli} O-157 Shiga-like toxins 1a (Stx-1) and 2 (Stx-2). Shiga toxin-producing \textit{E. coli} (STEC) produces Shiga toxin (Stx), which belongs to the AB\textsubscript{5} family of protein toxins, composed of one A subunit and five B subunits (Bergan et al., 2012). The A subunit has RNA N-glycosidase activity that causes cell death by inhibiting protein synthesis. The B subunit is non-toxic and functions to bind Pk to the surface of eukaryotic cells, allowing the toxin to enter the cell. Each B subunit has three Pk-binding sites, thus totaling 15 Pk binding sites per Stx molecule. We showed that this monovalent Pk-derivative, conjugated with a pentylamino group, showed strong binding activity to both Stx-1 and Stx-2, and thus represents a promising new candidate Stx-neutralizing agent.

2. Materials and methods

2.1. Expression of \textit{N. gonorrhoeae} LgtC and Stxs B subunits

A partially deleted \textit{lgtC} gene (1–858 bp) of \textit{N. gonorrhoeae} F62 was synthesized by Eurofins MWG Operon (Tokyo, Japan). This synthesized \textit{lgtC} gene was codon-
optimized for expression in *E. coli* with its C-terminal 25 amino acids deleted. To attach a spacer (GGGGSGGGGS) and 6 × His tag, the *lgtC* gene was amplified by PCR using A4GalT-frw and A4GalT-21-rev primers (Table 1). In addition, the sequence of the spacer and 6 × His tag was prepared using GS-H6 as a PCR template for GS-H6(-21)-frw and GS-H6-rev PCR primers. The *lgtC* gene attached to the spacer and 6 × His tag was PCR-amplified using the *lgtC* gene and DNA fragment of the spacer and 6 × His tag as templates and the A4GalT-frw and GS-H6-rev primers (Table 1). The amplified gene was then inserted into a pET32b vector by In-Fusion technology (CLONTECH, Mountain View, CA, USA). Linearized pET32b was prepared by PCR using pET32-frw and pET32-rev as primers. The recombinant pET32b construct was transformed into *E. coli* BL21 (DE3) cells. Expression of 6 × His-tagged LgtC was induced by the addition of 1 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) in the culture of this transformant in LB medium supplemented with 100 μg/ml of ampicillin.

DNA fragments composed of the coding sequences for the Stx1a-B and Stx2a-B subunits were synthesized by Eurofins MWG Operon, Inc. To attach the sequence of a spacer (GGGGSGGGGS) and 6 × His tag, each B subunit gene was amplified by PCR using Stx1a-B-frw and Stx1a-B-rev primers or Stx2a-B-frw and Stx2a-B-rev primers (Table 1), respectively. The sequence of the spacer and 6 × His tag was also prepared using GS-H6 as a PCR template and GS-H6-1aB-frw or GS-H6-2aB-frw and GS-H6-rev as PCR primers. The sequence containing the spacer and 6 × His tag was added to each gene by PCR, and the amplified genes inserted into pET32b vectors in the same manner as the *lgC-His* gene, using In-Fusion technology. Each constructed vector was then transformed into *E. coli* BL21 (DE3) cells, and the expression of each His-tagged
B subunit carried out in the same manner as LgtC expression.

2.2. Purification of LgtC and Stx B subunits

Purification of LgtC, Stx1a-B-His and Stx2a-B-His was performed using His60 Ni Superflow (CLONTECH) or TALON affinity gel column chromatography. Pelleted cells were suspended in 50 mM Tris-HCl (pH 7.8) containing 150 mM NaCl (Buffer A) and disrupted by sonication. The homogenate was then centrifuged at 5000×g and the supernatant collected and loaded onto a TALON resin affinity column, and this column was washed by Buffer A containing 40 mM imidazole. Each protein was eluted with Buffer A containing 300 mM imidazole. For size-exclusion chromatography, a Superdex 200 10/300 GL column (GE Healthcare Japan, Tokyo, Japan) was used. Buffer A was used as a running buffer. One milliliter of purified Stx1a-B (0.05 mg/ml) or Stx2a-B (0.4 mg/ml) was used for this size-exclusion chromatography.

2.3. SDS-PAGE

Recombinant protein samples were subjected to SDS-PAGE on 10 or 12% polyacrylamide gels using the Mini-protean II system (Bio-Rad, Hercules, CA, USA). For Stx-Bs, Tris-Tricine SDS-PAGE was adopted. Total proteins on SDS-PAGE gels were detected by Coomassie Brilliant blue R-250 or silver staining. Protein concentrations were measured by BCA Protein Assay-Reducing Agent Compatible (Thermo Fisher Scientific, Rockford, IL, USA).

2.4. 5-Trifluoroacetamido-1-pentanol (TFAP)-linked P\(^k\) (TFAP-P\(^k\)) synthesis

Synthesis of TFAP-P\(^k\) was carried out according to the scheme in Fig. 1. 5-
Trifluoroacetamidopentyl β-lactoside (TFAP-Lac) was prepared by a protocol described previously (Ogata et al., 2007). TFAP-Lac (40 mg, 0.076 mmol) and UDP-Gal (94 mg, 0.15 mmol) were first dissolved in a solution that contained 10.3 ml of 50 mM Tris-HCl (pH 6.8), MnCl₂ (34.6 mg), and BSA (15.3 mg), and 15.5 U (5 ml) of purified LgtC was then added. The mixture was then incubated for 4 h at 37°C, and the reaction terminated by boiling for 5 min. The supernatant was isolated by centrifugation (8000 × g, 20 min), concentrated and dissolved in 5 ml of CHCl₃/CH₃OH/H₂O (6:4:1), and loaded onto a Silica Gel 60 N column (4.5 × 30 cm). The same solvent at a flow rate of 10 ml/min was used as a running buffer and fraction sizes of 20 ml/tube. Aliquots from fractions 17–26 were then concentrated, dissolved in 2 ml of 20% methanol, and loaded onto an ODS column (2.5 × 30 cm) equilibrated with 20% methanol, at a flow rate of 2.0 ml/min. After washing the column with 280 ml of 20% methanol, the absorbed material was eluted with 40% methanol and a fraction size of 10 ml. The absorbance of the eluate was monitored at 210 nm. An aliquot from pooled fractions 3–4 was concentrated by evaporation and lyophilized.

High resolution electrospray ionization mass spectrometry (HR-ESI-MS): m/z 708.23174 [M+Na]⁺ (calcd for C₂₅H₄₂F₃N₁NaO₁₇, 708.23025); ¹H NMR (D₂O, 500 MHz): δ 4.84 (d, 1H, J₅''₂'' 4.0 Hz, H-1''), 4.40 (d, 1H, J₁',₂' 8.0 Hz, H-1'), 4.37 (d, 1H, J₁,₂ 8.0 Hz, H-1), 4.25 (1H, H-5''), 3.93-3.45 (18H), 3.23 (2H, H-β), 3.19 (1H, H-ε), 1.55 (2H, H-β), 1.51 (2H, H-δ), 1.30 (2H, H-γ); ¹³C NMR (D₂O, 125 MHz): δ 158.9 (CF₃C=ONH-), 116.0 (CF₃CONH-), 103.3 (C-1'), 102.0 (C-1), 100.4 (C-1''), 78.8 (C-4), 77.4 (C-4''), 75.5 (C-5'), 74.9 (C-5), 74.6 (C-3), 73.0 (C-2), 72.2 (C-3''), 71.0 (C-5''), 70.9 (C-2''), 70.4 (C-α), 69.2 (C-3''), 69.0 (C-4''), 68.6 (C-2''), 60.6 (C-6''), 60.4 (C-6'), 60.0 (C-6).
60.1 (C-6), 39.7 (C-ε), 28.3 (C-β), 27.5 (C-δ), and 27.5 (C-γ).

2.5. Surface plasmon resonance (SPR)

SPR analyses were performed using Biacore 2000 (GE Healthcare Japan, Tokyo, Japan). TFAP-Pk was treated with NaOH to remove trifluoroacetic acid (TFA) from amino groups and neutralized with HCl. The Pk was then immobilized onto a CM5 sensor chip (GE Healthcare Japan) by amine coupling at pH 4.0 (1500 – 2000 RU). Stx1a-B or Stx2a-B were then injected into the sensor chip in HBS-EP buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.005% Surfactant P-20 [GE Healthcare Japan], pH 7.4) at 30 µl/min. As a regeneration buffer, 10 mM 5-aminopentyl β-Pk (AP-Pk) treated with NaOH was used. Kinetics analysis was performed using 1:1 Langmuir binding model using BIAevaluation software (GE Healthcare Japan).

2.6. Analytical methods

The α1,4-Galactosyltransferase (α1,4GalT) activity of LgtC was assayed as follows. UDP-galactose (UDP-Gal, gifted from Yamasa Corp, Chiba, Japan) (10 mM), 2-[5′-dimethylaminonaphthalene-1′-sulfonyl-(2-aminoethoxy)]ethyl β-lactoside (dansyl-Lac, 5 mM), MnCl₂ (12.5 mM) and BSA (1 mg/ml) were dissolved in 50 mM Tris-HCl (pH 6.8), followed by the addition of 100 µl of enzyme solution (total volume 286 µl). Dansyl-Lac was prepared as described previously (Ogata et al., 2010). The reaction was initiated 37°C by addition of 100 µl enzyme solution (final concentration: 0.46 mg/ml of purified LgtC). At each sample time, 10 µl of the reaction mixture was added to 190 µl distilled water, followed by immediate boiling for 5 min. After
filtration through a 0.45-μm nitrocellulose filter (Millipore, Bedford, MA), the filtrates were analyzed by HPLC (Jasco LC-2000, Jasco Ltd., Tokyo, Japan) plus fluorescence detector (excitation, 330 nm; emission, 520 nm) (JOEL Ltd., Tokyo, Japan) using a Unison US-C18 (ODS, 4.6 × 250 mm, Imtakt, Japan) column, and eluted with 25% acetonitrile. The HPLC was operated isocratically at a flow rate of 1.0 ml/min and a column temperature of 40°C. One unit of enzyme activity was defined as the amount of enzyme capable of catalyzing the transfer of 1 μmol of Gal per minute.

Electrospray ionization (ESI) mass spectra were measured by a JMS-T100LC mass spectrometer (JOEL). 500-MHz 1H NMR spectra and 125-MHz 13C NMR spectra were recorded using a JNM-ECX500II spectrometer (JOEL). Chemical shifts were expressed in ppm relative to the methyl resonance of the external standard sodium 3-(trimethylsilyl) propionate.

3. Results and discussion

3.1. Expression and purification of LgtC

LgtC was expressed in the soluble fraction in E. coli and purified by His60 Ni Super flow column chromatography with 300 mM imidazole. Purified LgtC was observed as a single band on an SDS-PAGE gel (Fig. 2A), corresponding to its molecular weight estimated from its amino acid sequence. α4GnT activity of LgtC was detected using Dansyl-Lac and UDP-Gal as substrate in both cell homogenates (Fig. 2B) and purified samples (Fig. 2C) also, indicating that active α4GnT was expressed. Expressed LgtC in E. coli was 13-fold purified from the crude extract and finally, 0.14
mg of purified LgtC was obtained from 100 ml *E. coli* culture (Table 2). The specific activity of this purified LgtC was 66 U/mg, 13-fold higher than that of *N. meningitidis* LgtC purified from *E. coli* (Zhang et al., 2002). In the study of *N. meningitidis* LgtC, UDP-D-[6-3H] galactose and lactose were used for α4GnT assay as a sugar donor and acceptor, different from the substrates used in this study. This difference may cause discrepancies between the specific activity of the *N. gonorrhoeae* LgtC (used here) and that of *N. meningitidis* LgtC. Optimal pH and temperature in this assay were 8.0 and 40°C, respectively (Fig. 3).

3.2. TFAP-Pκ synthesis

A condensation reaction between lactose and TFAP was first catalyzed by cellulase from *T. reesei* to obtain TFAP-Lac, as described in our previous report (Ogata et al., 2007). In this study, TFAP-lactose was obtained in 0.67% yield based on the initial amount of lactose. This yield was a little lower than that (1.0%) in previous paper (Ogata et al., 2007). The efficiency of this condensation reaction by cellulase is low, but this reaction is an easy way to provide β-glycoside stereo-specifically, because it does not require any protection and deprotection steps. A novel *O*-linked Pκ-conjugated derivative with an alkyl spacer was then derived from the resulting product utilizing the above-described purified LgtC (Fig. 1). The yield of this reaction was 67% based on the initial amount of TFAP-lactose. Addition of α1,4-linked Gal to the TFAP-Lac acceptor led to the synthesis of trisaccharide glycoside TFAP-Pκ. Synthesized TFAP-Pκ was purified by Silica Gel 60 N column and ODS column (Fig. 4A) and HR-ESI-MS analysis of synthesized TFAP-Pκ showed [M + Na+] ion at *m/z* 708.23174, corresponding to the molecular formula, C_{25}H_{42}F_{3}N_{1}NaO_{17} (calcd, 708.23025) (Fig.
3B). In addition, 1H NMR spectroscopy was performed to confirm the structure of synthesized TFAP-Pk. LgtC purified from *E. coli* catalyzed the addition of galactose to TFAP-N-acetyllactosamine (Fig. 5). In a previous study, lactosyl-ceramide was galactosylated by catalytical reaction at the terminal Gal residue to obtain Pk-ceramide using α4GalT from *N. meningitidis* (Adlercreutz et al., 2010). However, no additional transfer of galactose to TFAP-Pk was observed here, using LgtC from *N. gonorrhoeae* for a 4-h reaction, indicating that *N. gonorrhoeae* LgtC has more narrow substrate specificity for Pk synthesis than α4GalT from *N. meningitidis*. In this point, LgtC from *N. gonorrhoeae* is more feasible for Pk synthesis than α4GalT from *N. meningitidis*.

3.3. Expression and purification of Stxs B subunits

Stx1a-B and Stx2a-B were expressed in *E. coli* and purified using TALON affinity gel chromatography. By SDS-PAGE, purified Stx1a-B and Stx2a-B were observed to be close to their estimated molecular weights (Fig. 6A). MALDI-TOF MS revealed the molecular weights of Stx1a-B and Stx2a-B to be 9139 Da and 8950 Da, respectively. This result indicates that the native signal peptide of each B subunit was cleaved off (1–20 aa of Stx1a-B and 1–19 aa of Stx2a-B), and each subunit might be secreted to the periplasm. By SDS-PAGE, each protein band was observed to be over 10 kDa, despite the exact molecular weight of both B subunits being below 10 kDa. This discrepancy may be caused by the 6 × His tag slowing protein mobility through SDS-PAGE, due to its positive charge. In gel filtration chromatography, each peak (Stx1a-B and Stx2a-B) was observed at around 20 and 30 kDa (Fig. 6B), respectively, indicating that these Stxs-B were expressed and purified as a dimer or trimer at 0.3 mM, and not as a pentamer. In the range of 5 to 85 μM, recombinant Stx1a-B produced in *E. coli*...
entirely formed pentamers, and recombinant Stx2a-B produced in *E. coli* existed predominantly as pentamers at more than 50 µM (Kitova et al., 2005). In another report, both recombinant subunits were expressed in *E. coli* as pentamers (Conrady et al., 2010). In the current study, a 6 × His tag was attached to the C-terminus of each B subunit. These results suggest that the 6 × His tag may prevent both B subunits from forming pentamers.

3.4. *P*^k binding of Stx B subunits

The synthesized TFAP-P^k was deacylated to AP-P^k by alkali treatment. AP-P^k was then immobilized on a CM5 chip by amine coupling, and various concentrations of each B subunit were then applied to the CM5 chip. The *K*_D of each B subunit was calculated by BIAevaluation software using obtained sensorgrams. Specific binding of each B subunit was observed to TFAP-P^k immobilized on the CM5 chip (Fig. 7), and each B subunit was washed out by free TFAP-P^k. The *K*_Ds of Stx1a-B and Stx2a-B were 6.8 × 10⁻⁶ M (*k*_{on} = 4.1 × 10¹ M⁻¹S⁻¹, *k*_{off} = 2.8 × 10⁻⁴ S⁻¹) and 2.2 × 10⁻⁵ M (*k*_{on} = 3.9 × 10² M⁻¹S⁻¹, *k*_{off} = 8.6 × 10⁻³ S⁻¹), respectively. Soltyk et al. reported that the *K*_D of the Stx1 B subunit pentamer to P^k was 4.8 × 10⁻³ M when immobilized on a CM5 sensor chip, as determined by SPR (Soltyk et al., 2002). Here, SPR determinations of *k*_{on} and *k*_{off} were impossible because the rapid kinetics of association and dissociation of the P^k ligand was observed. However, the *K*_D of the same Stx1 B subunit pentamer to P^k was previously reported to be 3 × 10⁻⁹ M (*k*_{on} = 2 × 10⁵ M⁻¹S⁻¹, *k*_{off} = 6 × 10⁻⁴ S⁻¹) when P^k incorporated into liposomes containing *Salmonella* serogroup B lipopolysaccharide was immobilized on a CM5 sensor chip (Soltyk et al., 2002). Thus theoretically, SPR in this study would be the same as the later experiment, in view of
the immobilization of P^k on the CM5 sensor chip, although the K_D of the Stx1 B subunit pentamer in the previous paper (3×10^{-9} M) was >1000-fold smaller than that of the Stx1a-B dimer used in this study (5.2×10^{-6} M). This difference might be caused by the subunit state of Stx1a-B, pentamer or dimer. However, k_{off} of the B subunit pentamer in the previous paper ($k_{off} = 6 \times 10^{-4}$ S$^{-1}$) is comparable to that of the Stx1a-B dimer of this study ($k_{off} = 2.4 \times 10^{-4}$ S$^{-1}$), indicating that the subunit state of the Stx B subunit is not involved in its dissociation from the P^k ligand but instead, has crucial effects on its ligand association (k_{on}). The K_D of the Stx B subunit to P^k-Cer-displaying cells was $10^{-8} – 10^{-9}$ M (Fuchs et al., 1986). These results showed that immobilization of the P^k ligand on the sensor chip is favorable for kinetic analysis of the Stx B subunit, and synthesis of the spacer-linked sugar chain is amenable to binding analysis of glycan-binding proteins and further development of an Stx-neutralizing agent.

However, in this biacore analysis, 1:1 Langmuir binding model fitting was adopted in spite of three P^k binding sites of Stx B subunits. 1:1 Langmuir binding model fitted the sensorgrams with low value of χ^2, 7.79 and 6.79 for Stx1 B subunit and Stx2 B subunit, respectively. However this fitting model limits the detailed binding analysis of the multivalency of Stx B subunits. If an isothermal titration calorimetry was used for binding analysis of multivalency of Stx B subunits, highly accurate data would be obtained.

In this study, we performed successfully novel enzymatic synthesis of spacer-linked P^k trisaccharide (TFAP- P^k) by cellulose from T. reesei and recombinant LgtC of N. meningitides purified from E. coli. The TFAP-P^k was utilized for the binding assay of recombinant Stx B subunits to P^k by SPR experiment. This cellulase-mediated
condensation from cellulase and glycosyltransferase is a valuable tool for the synthesis of spacer-linked oligosaccharide.

Acknowledgement

This work was supported partly by Promotion of Nanobio-Technology Research to support Aging and Welfare Society from the Ministry of Education, Culture, Sports, Science and Technology, Japan. There was no additional external funding received for this study.

References

Table 1. Primers and His-tag template.

<table>
<thead>
<tr>
<th>Name</th>
<th>5’ – 3’</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4GalT-frw</td>
<td>GAAGGAGATACATGGACATCGTCTTTGCTGC</td>
</tr>
<tr>
<td>A4GalT-21-rev</td>
<td>GAGCCACCGCCACCCGGAGGAACAGCCAGTTTCC</td>
</tr>
<tr>
<td>GS-H6(-21)-frw</td>
<td>GGAAACTGGCTGTTCTCCTCCGGGGTGCGGTTGGCTC</td>
</tr>
<tr>
<td>GS-H6-rev</td>
<td>CGCAAGCTTTGCGACTTAGTGATGATGGTGATGATG</td>
</tr>
<tr>
<td>pET32-frw</td>
<td>ATGTATATCTCTTCTTAAAGTTAAGGGAAAAATTATTTTC</td>
</tr>
<tr>
<td>pET32-rev</td>
<td>GTCGACAAGCTTGCGGC</td>
</tr>
<tr>
<td>Stx1a-B-frw</td>
<td>GAAGGAGATACATGAAAAAAACATTATTAATAGCTGC</td>
</tr>
<tr>
<td>Stx1a-B-rev</td>
<td>GAGCCACCGCCACCCGGAAAAATAACTTCCGCTGAATC</td>
</tr>
<tr>
<td>GS-H6-B1a-frw</td>
<td>GATTCAGCGAAGTTATTTTTCTGTTGATGCGGTTGGCTC</td>
</tr>
<tr>
<td>Stx2a-B-frw</td>
<td>GAAGGAGATACATGAAGAGATTTTATGCGG</td>
</tr>
<tr>
<td>Stx2a-B-rev</td>
<td>GAGCCACCGCCACCGTCATATAAACTGCACTTCAGC</td>
</tr>
<tr>
<td>GS-H6-B2a-frw</td>
<td>GCTGAAGTGCAGTAAAATATGACCGGGCGGTGGCTC</td>
</tr>
<tr>
<td>GS-H6 template</td>
<td>GGTGGCGGGTGCTCGAGGCGAGGCTCAGTCATACATCACC ATCACCCTA</td>
</tr>
</tbody>
</table>
Table 2. Purification of recombinant LgtC.

<table>
<thead>
<tr>
<th></th>
<th>Volume (ml)</th>
<th>Activity (U)</th>
<th>Protein (mg)</th>
<th>Specific activity (U/mg)</th>
<th>Yield (%)</th>
<th>Purification (Fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude</td>
<td>2.5</td>
<td>52</td>
<td>11</td>
<td>5.0</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Elution</td>
<td>2</td>
<td>9.3</td>
<td>0.14</td>
<td>66</td>
<td>18</td>
<td>13</td>
</tr>
</tbody>
</table>
Figure legends

Fig. 1. Scheme of enzymatic synthesis of TFAP-P^k_.

Fig. 2. Purification and characterization of recombinant LgtC. (A) SDS-PAGE of purified recombinant LgtC. Lane 1: molecular weight marker, lane 2: cell homogenate, lane 3: purified LgtC. (B) HPLC chromatograms of LgtC reaction mixtures using cell homogenate. (C) Time course of the production of Dansyl-P^k_ from Dansy-Lac using purified recombinant LgtC.

Fig. 3. Characterization of recombinant LgtC. (A) Optimal pH of recombinant LgtC. The activity was measured in each pH condition prepared by indicated buffers. (B) Optimal temperature of recombinant LgtC. The assay was performed at each temperature.

Fig. 4. Synthesis of TFAP-P^k_. (A) Chromatogram of ODS column chromatography for the purification of TFAP-P^k_. TFAP-P^k_ was eluted by 40% methanol. (B) HR-ESI-MS analysis of synthesized TFAP-P^k_.

Fig. 5. 500 MHz ^1^H NMR spectrum of TFAP-P^k_. Solvent, D_2,O; temperature, 25ºC; concentration, 8.3 mg/ml.

Fig. 6. Purification of recombinant Stx1a-B and Stx2a-B. (A) SDS-PAGE of Stx1a-B and Stx2a-B purified by TALON affinity gel column chromatography. Lane 1: molecular weight marker, lane 2: cell homogenate, Lane 3: wash fraction 1, lane 4: wash fraction 2, lane 5: elution fraction. (B) Chromatograms of Superdex 200 10/300 GL column chromatography using one milliliter of purified Stx1a-B (0.05 mg/ml) and
Stx2a-B (0.4 mg/ml). To estimate molecular weight of each purified protein, Gel filtration calibration kit (Low molecular weight, GE Healthcare Japan) was used. This kit contains Conalbumin (75 kDa), Ovalbumin (44 kDa), Carbonic anhydrase (29 kDa), Ribonuclease (13.7 kDa) and Aprotinin (6.5 kDa).

![Sensorgrams of SPR experiment using purified Stx1a-B and Stx2a-B. This SPR experiment was performed using Biacore 2000. TFAP-P^k treated with NaOH was immobilized on the CM5 sensor chip and each concentration of purified Stx1a-B or Stx2a-B was injected into the sensor. As a regeneration buffer, 10 mM TFAP-P^k treated with NaOH was used.](image-url)
Lactose $\overset{+}{\rightarrow}$ 5-Trifluoroacetamido-1-pentanol (TFAP)

Cellulase from *Trichoderma reesei*

TFAP-lactose

UDP-Gal $\overset{\text{LgtC from } N. \text{gonorrhoeae}}{\rightleftharpoons}$ expressed in *E. coli*

TFAP-P^k
Figure 2, Kato et al.

(A) Mass spectrometry analysis showing the molecular weight of protein LgtC.

(B) Chromatograms of different standards and reaction mixtures. The product standards (Dansyl-Pk) and the acceptor standards (Dansyl-Lac) are shown.

(C) Graph plotting the transfer product concentration (mM) against reaction time (min). The equation $y = 0.5424x$ with a R^2 value of 0.99609 is shown.
Figure 3, Kato et al.
Figure 4, Kato et al.

(A) Absorbance

(B) 708.23174
Figure 5, Kato et al.
Figure 6, Kato et al.

(A)

(B)
Figure 7, Kato et al.